(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
mark(f(X)) → active(f(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(g(X)) → active(g(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
g(mark(X)) → g(X)
g(active(X)) → g(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(cons(z0, f(g(z0))))
active(g(0)) → mark(s(0))
active(g(s(z0))) → mark(s(s(g(z0))))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
mark(f(z0)) → active(f(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(g(z0)) → active(g(mark(z0)))
mark(0) → active(0)
mark(s(z0)) → active(s(mark(z0)))
mark(sel(z0, z1)) → active(sel(mark(z0), mark(z1)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
sel(mark(z0), z1) → sel(z0, z1)
sel(z0, mark(z1)) → sel(z0, z1)
sel(active(z0), z1) → sel(z0, z1)
sel(z0, active(z1)) → sel(z0, z1)
Tuples:
ACTIVE(f(z0)) → c(MARK(cons(z0, f(g(z0)))), CONS(z0, f(g(z0))), F(g(z0)), G(z0))
ACTIVE(g(0)) → c1(MARK(s(0)), S(0))
ACTIVE(g(s(z0))) → c2(MARK(s(s(g(z0)))), S(s(g(z0))), S(g(z0)), G(z0))
ACTIVE(sel(0, cons(z0, z1))) → c3(MARK(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c4(MARK(sel(z0, z2)), SEL(z0, z2))
MARK(f(z0)) → c5(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c6(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(g(z0)) → c7(ACTIVE(g(mark(z0))), G(mark(z0)), MARK(z0))
MARK(0) → c8(ACTIVE(0))
MARK(s(z0)) → c9(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(sel(z0, z1)) → c10(ACTIVE(sel(mark(z0), mark(z1))), SEL(mark(z0), mark(z1)), MARK(z0), MARK(z1))
F(mark(z0)) → c11(F(z0))
F(active(z0)) → c12(F(z0))
CONS(mark(z0), z1) → c13(CONS(z0, z1))
CONS(z0, mark(z1)) → c14(CONS(z0, z1))
CONS(active(z0), z1) → c15(CONS(z0, z1))
CONS(z0, active(z1)) → c16(CONS(z0, z1))
G(mark(z0)) → c17(G(z0))
G(active(z0)) → c18(G(z0))
S(mark(z0)) → c19(S(z0))
S(active(z0)) → c20(S(z0))
SEL(mark(z0), z1) → c21(SEL(z0, z1))
SEL(z0, mark(z1)) → c22(SEL(z0, z1))
SEL(active(z0), z1) → c23(SEL(z0, z1))
SEL(z0, active(z1)) → c24(SEL(z0, z1))
S tuples:
ACTIVE(f(z0)) → c(MARK(cons(z0, f(g(z0)))), CONS(z0, f(g(z0))), F(g(z0)), G(z0))
ACTIVE(g(0)) → c1(MARK(s(0)), S(0))
ACTIVE(g(s(z0))) → c2(MARK(s(s(g(z0)))), S(s(g(z0))), S(g(z0)), G(z0))
ACTIVE(sel(0, cons(z0, z1))) → c3(MARK(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c4(MARK(sel(z0, z2)), SEL(z0, z2))
MARK(f(z0)) → c5(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c6(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(g(z0)) → c7(ACTIVE(g(mark(z0))), G(mark(z0)), MARK(z0))
MARK(0) → c8(ACTIVE(0))
MARK(s(z0)) → c9(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(sel(z0, z1)) → c10(ACTIVE(sel(mark(z0), mark(z1))), SEL(mark(z0), mark(z1)), MARK(z0), MARK(z1))
F(mark(z0)) → c11(F(z0))
F(active(z0)) → c12(F(z0))
CONS(mark(z0), z1) → c13(CONS(z0, z1))
CONS(z0, mark(z1)) → c14(CONS(z0, z1))
CONS(active(z0), z1) → c15(CONS(z0, z1))
CONS(z0, active(z1)) → c16(CONS(z0, z1))
G(mark(z0)) → c17(G(z0))
G(active(z0)) → c18(G(z0))
S(mark(z0)) → c19(S(z0))
S(active(z0)) → c20(S(z0))
SEL(mark(z0), z1) → c21(SEL(z0, z1))
SEL(z0, mark(z1)) → c22(SEL(z0, z1))
SEL(active(z0), z1) → c23(SEL(z0, z1))
SEL(z0, active(z1)) → c24(SEL(z0, z1))
K tuples:none
Defined Rule Symbols:
active, mark, f, cons, g, s, sel
Defined Pair Symbols:
ACTIVE, MARK, F, CONS, G, S, SEL
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(f(z0)) → c(MARK(cons(z0, f(g(z0)))), CONS(z0, f(g(z0))), F(g(z0)), G(z0))
ACTIVE(g(0)) → c1(MARK(s(0)), S(0))
ACTIVE(g(s(z0))) → c2(MARK(s(s(g(z0)))), S(s(g(z0))), S(g(z0)), G(z0))
ACTIVE(sel(0, cons(z0, z1))) → c3(MARK(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c4(MARK(sel(z0, z2)), SEL(z0, z2))
MARK(f(z0)) → c5(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c6(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(g(z0)) → c7(ACTIVE(g(mark(z0))), G(mark(z0)), MARK(z0))
MARK(s(z0)) → c9(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(sel(z0, z1)) → c10(ACTIVE(sel(mark(z0), mark(z1))), SEL(mark(z0), mark(z1)), MARK(z0), MARK(z1))
F(mark(z0)) → c11(F(z0))
F(active(z0)) → c12(F(z0))
CONS(mark(z0), z1) → c13(CONS(z0, z1))
CONS(z0, mark(z1)) → c14(CONS(z0, z1))
CONS(active(z0), z1) → c15(CONS(z0, z1))
CONS(z0, active(z1)) → c16(CONS(z0, z1))
G(mark(z0)) → c17(G(z0))
G(active(z0)) → c18(G(z0))
S(mark(z0)) → c19(S(z0))
S(active(z0)) → c20(S(z0))
SEL(mark(z0), z1) → c21(SEL(z0, z1))
SEL(z0, mark(z1)) → c22(SEL(z0, z1))
SEL(active(z0), z1) → c23(SEL(z0, z1))
SEL(z0, active(z1)) → c24(SEL(z0, z1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(cons(z0, f(g(z0))))
active(g(0)) → mark(s(0))
active(g(s(z0))) → mark(s(s(g(z0))))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
mark(f(z0)) → active(f(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(g(z0)) → active(g(mark(z0)))
mark(0) → active(0)
mark(s(z0)) → active(s(mark(z0)))
mark(sel(z0, z1)) → active(sel(mark(z0), mark(z1)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
sel(mark(z0), z1) → sel(z0, z1)
sel(z0, mark(z1)) → sel(z0, z1)
sel(active(z0), z1) → sel(z0, z1)
sel(z0, active(z1)) → sel(z0, z1)
Tuples:
MARK(0) → c8(ACTIVE(0))
S tuples:
MARK(0) → c8(ACTIVE(0))
K tuples:none
Defined Rule Symbols:
active, mark, f, cons, g, s, sel
Defined Pair Symbols:
MARK
Compound Symbols:
c8
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(0) → c8(ACTIVE(0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(cons(z0, f(g(z0))))
active(g(0)) → mark(s(0))
active(g(s(z0))) → mark(s(s(g(z0))))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
mark(f(z0)) → active(f(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(g(z0)) → active(g(mark(z0)))
mark(0) → active(0)
mark(s(z0)) → active(s(mark(z0)))
mark(sel(z0, z1)) → active(sel(mark(z0), mark(z1)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
sel(mark(z0), z1) → sel(z0, z1)
sel(z0, mark(z1)) → sel(z0, z1)
sel(active(z0), z1) → sel(z0, z1)
sel(z0, active(z1)) → sel(z0, z1)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
active, mark, f, cons, g, s, sel
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))